
International Journal Of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Parallel: One Time Pad using Java
Bala Dhandayuthapani Veerasamy, Dr. G.M. Nasira

Abstract— Parallel program allows most efficient use of processors. The efficient processors utilization is the key to maximizing

performance of computing systems. This research paper described the computations to be parallelized One Time Pad (OTP) in the form of

a sequential program. To transform the sequential computations into a parallel program, the control and data dependencies have to be

taken into consideration to ensure that the parallel program produces the same results as the sequential program for all possible input

values. The main goal is usually to reduce the program execution time as much as possible by using multiple processors or cores.

Index Terms— Asymmetric encryption, Chip Multiprocessing, Cryptography, Multi-core, Multithreading, One Time Pad, Simultaneous

multi-threading, Symmetric encryption

—————————— ——————————

1 INTRODUCTION

RYPTOGRAPHY [2] refers to the art of protecting trans-
mitted information from unauthorized interception or
tampering. The other side of the coin, cryptanalysis, is the

art of breaking such secret ciphers and reading the infor-
mation, or perhaps replacing it with different information.
Sometimes the term cryptology is used to include both of the-
se aspects.
Cryptography is closely related to another part of communica-
tion theory, namely coding theory. This involves translating
information of any kind (text, scientific data, pictures, sound,
and so on) into a standard form for transmission, and protect-
ing this information against distortion by random noise. There
is a big difference though, between interference by random
noise, and interference by a purposeful enemy, and the tech-
niques used are quite different.

Cryptography [7] is probably the most important aspect of
communications security and is becoming increasingly im-
portant as a basic building block for computer security. The
increased use of computer and communications systems by

industry has increased the risk of theft of proprietary in-

formation.

1.1 Cryptographic Algorithms

In general, cryptographic algorithms [2] are often grouped
into two broad categories symmetric and asymmetric. But in
practice, today's popular cryptosystems [2] use a hybrid com-
bination of symmetric and asymmetric algorithms. Symmetric
and asymmetric algorithms can be distinguished by the types
of keys they use for encryption and decryption operations.

An original message is known as the plaintext, while the

coded message is called the ciphertext [2]. The process of con-
verting from plaintext to ciphertext is known as enciphering or

encryption; restoring the plaintext from the ciphertext is deci-
phering or decryption. The many schemes used for encryption
constitute the area of study known as cryptography. Such a
scheme is known as a cryptographic system or a cipher. Tech-
niques used for deciphering a message without any
knowledge of the enciphering details fall into the area of
cryptanalysis [2]. Cryptanalysis is what the layperson calls
"breaking the code." The areas of cryptography and cryptanal-
ysis together are called cryptology.

Symmetric Encryption:

A method of encryption that requires the same secret key to
encipher and decipher the message is known as private key
encryption or symmetric encryption [1]. Symmetric encryption
methods use mathematical operations that can be pro-
grammed into extremely fast computing algorithms so that the
encryption and decryption processes are done quickly by even
small computers. There are a number of popular symmetric
encryption cryptosystem. One of the most widely known is
the Data Encryption Standards (DES), which was developed
by IBM and is based on the company’s Lucifer algorithm, this
uses a key length of 128 bits. A symmetric encryption scheme
has five ingredients
Plaintext: This is the original intelligible message or data that
is fed into the algorithm as input.
Encryption algorithm: The encryption algorithm performs
various substitutions and transformations on the plaintext.
Secret key: The secret key is also input to the encryption algo-
rithm. The key is a value independent of the plaintext and of
the algorithm. The algorithm will produce a different output
depending on the specific key being used at the time. The ex-
act substitutions and transformations performed by the algo-
rithm depend on the key.
Ciphertext: This is the scrambled message produced as out-
put. It depends on the plaintext and the secret key. For a given
message, two different keys will produce two different
ciphertexts. The ciphertext is an apparently random stream of
data and, as it stands, is unintelligible.
Decryption algorithm: This is essentially the encryption algo-
rithm run in reverse. It takes the ciphertext and the secret key
and produces the original plaintext.

C

————————————————

 Bala Dhandayuthapani Veerasamy is currently a Research Scholar in Infor-
mation Technology, Manonmaniam Sundaranar University, India. E-mail:
dhanssoft@gmail.com

 Dr. G.M. Nasira is currently working as an Assistant professor / Comput-
er Science, Chikkanna Govt Arts College, Tirupur -2, Tamilnadu, India. E-
mail: nasiragm99@yahoo.com

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Asymmetric Encryption:

Another category of encryption techniques is asymmetric en-
cryption [1]. Whereas the symmetric encryption systems are
based on using a single key to both encrypt and decrypt a
message, asymmetric encryption uses two different but related
keys, and either key can be used to encrypt or decrypt the
message. If, however, Key A is used to encrypt the message,
only Key B can decrypt it, and if Key B is used to encrypt a
message, only Key A can decrypt it. Asymmetric encryption
can be used to provide elegant solutions to problems of secre-
cy and verification. This technique has its highest value when
one key is used as a private key, which means that it is kept
secret (much like the key of symmetric encryption), known
only to the owner of the key pair, and the other key serves as a
public key, which means that it is stored in a public location
where anyone can use it. This is why the more common name
for asymmetric encryption is public key encryption.

Asymmetric [2] algorithms are based on one-way functions. A
one-way function is simple to compute in one direction, but
complex to compute in the opposite. This is the foundation of
public-key encryption. Public-key encryption is based on a
hash value, is calculated from an input number using a hash-
ing algorithm. This hash value is essential summary of the
original input values. It is virtually impossible to derive the
original values without knowing how the values were used to
create the hash value. One of the most popular public key
cryptosystems is RSA, whose name is derived from Rivest-
Shamir-Adleman, the algorithm's developers. The RSA algo-
rithm was the first public key encryption algorithm developed
(in 1977) and published for commercial use. It is very popular
and has been embedded in both Microsoft's and Netscape's
Web browsers to enable them to provide security for e-
commerce applications. The patented RSA algorithm has in
fact become the de facto standard for public use encryption
applications.

2 ONE TIME PADS

One Time Pad [2] is one of the methods in symmetric encryp-
tion. The method was presented in 1918 by Gilbert Vernam
and Joseph Mauborgne. An Army Signal Corp officer, Joseph
Mauborgne, proposed an improvement to the Vernam cipher
that yields the ultimate in security. Mauborgne suggested us-
ing a random key [7] that is as long as the message, so that the
key need not be repeated. In addition, the key is to be used to
encrypt and decrypt a single message, and then is discarded.
Each new message requires a new key of the same length as
the new message. Such a scheme, known as a one-time pad, is
unbreakable [7]. It produces random output that bears no sta-
tistical relationship to the plaintext. Because the ciphertext
contains no information whatsoever about the plaintext, there
is simply no way to break the code.

Methods on One Time Pad:

To perform the Vernam cipher encryption operation, the pad
values are added to numeric values that represent the
plaintext that needs to be encrypted. So, each character of the

plaintext is turned into a number and a pad value for that po-
sition is added to it. The resulting sum for that character is
then converted back to a ciphertext letter for transmission.

There are two way to produce random key. They are addi-
tive key and subtractive key. In the additive key, we just add
modulo 26 each letter of the message (plaintext) with its corre-
sponding key. If the sum of the two values exceeds 26, then 26
is subtracted from the total. The process of keeping a comput-
ed number within a specific range is called modulo; thus, re-
quiring that all numbers be in the range 1-26 is referred to as
Modulo 26. In Modulo 26, if a number is larger than 26, then
26 is repeatedly subtracted from it until the number is in the
proper range. Here we used 25 (0-25=26), because we used
arrary values in the following program 1.

Encryption:

 i j s e r (plaintext)

 (8)i (9)j (18)s (4)e (17)r (plaintextkey)

 (7)h (4)e (11)l (11)l (14)o (secrettextkey)

 +(15) (13) (29) (19) (31) (plaintextkey+secrettextkey)

 (15)p (13)n (4)e (15)p (6)g (ciphertextkey-25)

 p n e p g (ciphertext)

Decryption:

 p n e p g (ciphertext)

 (15) p (13)n (4)e (15)p (6)g (ciphertextkey)

 (7) h (4) e (11)l (11)l (14)o (secrettextkey)

- (11) (9) (-7) (4) (-8) (ciphertextkey- ciphertextkey)

 (11)i (9)j (18)s (4)e (17)r (25-plaintextkey)

 i j s e r (plaintext)

And the subtractive key works in a similar way to additive

key, but here the value of the key is subtracted modulo 26 for
the value of the plaintext. The one time pad has a unique cryp-
tographic quality in that it cannot be broken. It is not that it is
difficult to crack, nor that it takes a long time, but rather that
the cipher text contains no information about the key other
than its length.

Advantages:

One-time pads have a number of advantages over traditional
cryptography systems. They are extremely computationally
efficient both in terms of encryption and decryption. They are
also unbreakable under the assumptions that

1. The pad is truly random. Generating truly random one-
time-pads is a complex task. Choosing the output of a random
number generator, for example, is not a desirable mechanism
for generating the pad. Good pads are generated by sampling
some random physical event such as radioactive decay.

2. The pad is never reused. Reusing the pad permits an ad-
versary to guess the pad and the two plaintext messages. The
basic strategy is to guess that the plaintext version of one mes-
sage is a particular sequence, and to infer the pad from this.

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Elements of the pad are then verified by trying to decode the
second message with this pad. Parts of the second message
that appear to have been correctly decoded can then be used
to guess more of the pad.

3. The pad is secret to the two parties. Having an adversary
obtain a copy of the pad permits the adversary to decode all
pervious messages, as well as future communications. De-
struction of used pads is therefore critical. It is also interesting
to note that breaking part of the message does not provide any
advantage in term of breaking the rest of the message. There is
no short decrypting key to guess. The messages are also self
authenticating.

Disadvantages:

An interloper cannot generate fictitious messages as they will
not properly decrypt. The primary disadvantage with using a
one-time only pad is that the pad must be as large as the mes-
sage to be transmitted. While this has inhibited the use of one-
time pads until now, recently we have seen a significant in-
crease in the number of bits that can be efficiently stored, and
easily transported and made available to a mobile user. The
one-time pad offers complete security, but in practice, has two
fundamental difficulties:

1. There is the practical problem of making large quantities
of random keys. Any heavily used system might require mil-
lions of random characters on a regular basis. Supplying truly
random characters in this volume is a significant task.

2. Even more daunting is the problem of key distribution
and protection. For every message to be sent, a key of equal
length is needed by both sender and receiver. Thus, a mam-
moth key distribution problem exists.

Because of these difficulties, the one-time pad is of limited
utility, and is useful primarily for low-bandwidth channels
requiring very high security.

3 PARALLEL PROGRAMMING

Parallel computers have been used for many years, and many differ-
ent architectural alternatives have been proposed and used. In order

to achieve parallel execution in software, hardware must provide a
platform that supports the simultaneous execution of multiple

threads. Generally speaking, computer architectures can be
classified by two different dimensions. The first dimension is
the number of instruction streams that particular computer
architecture may be able to process at a single point in time.
The second dimension is the number of data streams that can
be processed at a single point in time. In this way, any given
computing system can be described in terms of how instruc-
tions and data are processed. This classification system is
known as Flynn’s taxonomy [5] [8](Flynn, 1972). This taxono-
my characterizes parallel computers according to the global
control and the resulting data and control flows. Four catego-
ries are distinguished:

1. Single-Instruction, Single-Data (SISD)[8]: There is one
processing element which has access to a single program and
data storage. In each step, the processing element loads an
instruction and the corresponding data and executes the in-
struction. The result is stored back in the data storage. Thus,

SISD is the conventional sequential computer according to the
von Neumann model.

2. Multiple-Instruction, Single-Data (MISD)[8]: There are
multiple processing elements each of which has a private pro-
gram memory, but there is only one common access to a single
global data memory. In each step, each processing element
obtains the same data element from the data memory and
loads an instruction from its private program memory. These
possibly different instructions are then executed in parallel by
the processing elements using the previously obtained (identi-
cal) data element as operand. This execution model is very
restrictive and no commercial parallel computer of this type
has ever been built.

3. Single-Instruction, Multiple-Data (SIMD)[8]: There are
multiple processing elements each of which has a private ac-
cess to a (shared or distributed) data memory, but there is only
one program memory from which a special control processor
fetches and dispatches instructions. In each step, each pro-
cessing element obtains from the control processor the same
instruction and loads a separate data element through its pri-
vate data access on which the instruction is performed. Thus,
the instruction is synchronously applied in parallel by all pro-
cessing elements to different data elements. For applications
with a significant degree of data parallelism, the SIMD ap-
proach can be very efficient.

4. Multiple-Instruction, Multiple-Data (MIMD)[8]: There
are multiple processing elements each of which has a separate
instruction and data access to a (shared or distributed) pro-
gram and data memory. In each step, each processing element
loads a separate instruction and a separate data element, ap-
plies the instruction to the data element, and stores a possible
result back into the data storage. The processing elements
work asynchronously with each other. Multi-core [5] proces-
sors or cluster systems are examples for the MIMD model. The
core of a processor is the part of the chip responsible for exe-
cuting instructions.

A physical processor [6] is made up of a number of differ-

ent resources, including the architecture state—the general
purpose CPU registers and interrupt controller registers, cach-
es, buses, execution units, and branch prediction logic. How-
ever, in order to define a thread, only the architecture state is
required. A logical processor can thus be created by duplicat-
ing this architecture space. The execution resources are then
shared among the different logical processors. This technique
is known as Simultaneous MultiThreading, or SMT[6]. Intel’s
implementation of SMT is known as Hyper-Threading Tech-
nology, or HT Technology. HT Technology makes a single
processor appear, from software’s perspective, as multiple
logical processors. This allows operating systems and applica-
tions to schedule multiple threads to logical processors as they
would on multiprocessor [5] systems. From a microarchitec-
ture perspective, instructions from logical processors are per-
sistent and execute simultaneously on shared execution re-
sources. In other words, multiple threads can be scheduled,
but since the execution resources are shared, it’s up to the mi-
croarchitecture to determine how and when to interleave the
execution of the two threads. When one thread stalls, another

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

thread is allowed to make progress. These stall events include
handling cache misses and branch mispredictions. The next
logical step from simultaneous multi-threading is the multi-
core processor. Multi-core processors use Chip MultiPro-
cessing (CMP)[6]. Rather than just reuse select processor re-
sources in a single-core processor, processor manufacturers
take advantage of improvements in manufacturing technology
to implement two or more “execution cores” within a single
processor. These cores are essentially two individual proces-
sors on a single die. Execution cores have their own set of exe-
cution and architectural resources. Depending on design, the-
se processors may or may not share a large on-chip cache. In
addition, these individual cores may be combined with SMT;
effectively increasing the number of logical processors by
twice the number of execution cores. The different processor
architectures [6] are highlighted in Fig. 1.

Fig. 1. Simple Comparison of Single-core, Multi-processor, and Multi-Core
Architectures

Multi-core platforms allow developers to optimize applica-
tions by intelligently partitioning different workloads on dif-
ferent processor cores. Application code can be optimized to
use multiple processor resources, resulting in faster applica-
tion performance. Multi-threaded applications running on
multi-core platforms have different design considerations than
do multi-threaded applications running on single-core plat-
forms. On single-core platforms, assumptions may be made by
the developer to simplify writing and debugging a multi-
threaded application. These assumptions may not be valid on
multi-core platforms. Two areas that highlight these differ-
ences are memory caching and thread priority.

4 IDENTIFYING PROBLEM

One Time Pad is resolved in many programming languages
such as C, C++. This is not new to the world. But we have not
noticed one time pad resolved in java programming language.
The following program 1 resolved One Time Pad in sequential
way using java language, this itself is a research findings. This
program can be exected on single processor environment.

Since we discussed earliy in this paper, there are two ways
to produce random key, they are additive key and subtractive

key. We used addictive key to produce ciphertext. This One
Time Pad can be used various application such as password
access of any system, message transfer, etc.

Program 1: sequential One Time Pad
package onepad;
class Sequentialonepad {
 //one pad text
 String pad="abcdefghijklmnopqrstuvwxyz";
 char onepad[]=pad.toCharArray();
 //plaing text
 String planintxt="ijser";
 char plain[]=planintxt.toCharArray();
 //secret text
 String enctxt="hello";
 char enc[]=enctxt.toCharArray();

 char cipher[]=new char[5]; //for ciphertext
 static int key1[]=new int[5];// for plaintext key
 static int key2[]=new int[5];//for secrettext key

 int k=0;
 Sequentialonepad(){}

 public void encript(){
 try{

 for(int j=0;j<plain.length;j++){
 //find location of plaintext and placed in key1 array
 for(int i=0;i<onepad.length;i++)
 if(plain[j]==onepad[i])
 key1[j]=i;

 //find location of secrettext and placed in key2 array
 for(int i=0;i<onepad.length;i++)
 if(enc[j]==onepad[i])
 key2[j]=i;

//summation of plaintext and secrettext location
k=key1[j]+key2[j];

//if key (k) value existe more than 25 and then subtract by 25
 if(k>25)
 k=k-25;

//assign ciphertext locaton by key (k) from onepad array
 cipher[j]=onepad[k];

 System.out.println("(key1) " + key1[j] + " + (key2) " + key2[j]
+" = " + k +" (cipher) " + cipher[j]);

 }
 }catch(Exception e) { System.out.println("Error" + e);}
 }
public void decryipt(){
 System.out.println("Decrypt...");
 try{

 for(int j=0;j<plain.length;j++){
 for(int i=0;i<onepad.length;i++)
 if(cipher[j]==onepad[i]){
 key1[j]=i;
 break;

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 }

 k=key1[j]-key2[j];
 if(k<0)
 k=25+k;
 cipher[j]=onepad[k];
 System.out.println("(key1) " + key1[j] + " + (key2) "

+ key2[j] +" = " + k +" (cipher) " + cipher[j]);
 }
 }catch(Exception e) { System.out.println("Error" + e);}
 }
 public static void main(String str[]){
 try{
 Sequentialonepad sp=new Sequentialonepad();
 sp.encript();
 }catch(Exception e){ System.out.println("Error: " +e);}
 }
}
Here we have used onepad[] array to have all alphabets,

plain[] array to have plaintext, enc[] array to have secrettext,
key1[] array to have location of plaintext on the array, key2[]
array to have location of secrettext and cipher[] array used for
holding the encrypted text. We assigned plaintext[] array as
“ijser” and enc[] array as “hello”; hence the output of the pro-
gram is

Encripty...
(key1) 8 + (key2) 7 = 15 (cipher) p
(key1) 9 + (key2) 4 = 13 (cipher) n
(key1) 18 + (key2) 11 = 4 (cipher) e
(key1) 4 + (key2) 11 = 15 (cipher) p
(key1) 17 + (key2) 14 = 6 (cipher) g
Decrypt...
(key1) 15 + (key2) 7 = 8 (cipher) i
(key1) 13 + (key2) 4 = 9 (cipher) j
(key1) 4 + (key2) 11 = 18 (cipher) s
(key1) 15 + (key2) 11 = 4 (cipher) e

 (key1) 6 + (key2) 14 = 17 (cipher) r

In the above program, there are two processes we identi-
fied. The first process is converting plaintext to plaintext key,
and the second process is converting secrettext to secrettext
key. When we execute this two process as sequential way,
would take some more time. The problem we identified here,
to execut the above two processes either in Simultaneous Mul-
ti-Threading (SMT) (discussed in section 5.1) or in multi-core
processors (Chip MultiProcessing - CMP) (discussed in section
5.2) in parallel way on, would concretely reduce the execution
time. Hence, we will have better performance than the sequen-
tial One Time Pad.

5 PROBLEM SOLVING METHOD

One Time Pad java program using sequential execution on
single processor will give normal execution time. Solving any
problem in parallel way, encompass three steps. They are dis-
cussed bellow.

1. Decomposition of the computations [8]: The computa-
tions of the sequential algorithm are decomposed into tasks,

and dependencies between the tasks are determined. The tasks
are the smallest units of parallelism. Depending on the target
system, they can be identified at different execution levels:
instruction level, data parallelism, or functional parallelism. In
principle, a task is a sequence of computations executed by a
single processor or core. Depending on the memory model, a
task may involve accesses to the shared address space or may
execute message-passing operations. Depending on the specif-
ic application, the decomposition into tasks may be done in an
initialization phase at program start (static decomposition),
but tasks can also be created dynamically during program
execution. In this case, the number of tasks available for execu-
tion can vary significantly during the execution of a program.
At any point in program execution, the number of executable
tasks is an upper bound on the available degree of parallelism
and, thus the number of cores that can be usefully employed.
The goal of task decomposition is therefore to generate
enough tasks to keep all cores busy at all times during pro-
gram execution. But on the other hand, the tasks should con-
tain enough computations such that the task execution time is
large compared to the scheduling and mapping time required
to bring the task to execution. The computation time of a task
is also referred to as granularity: Tasks with many computa-
tions have a coarse-grained granularity; tasks with only a few
computations are fine-grained. If task granularity is too fine-
grained, the scheduling and mapping overhead is large and
constitutes a significant amount of the total execution time.
Thus, the decomposition step must find a good compromise
between the number of tasks and their granularity. According
to our sequential One Time Pad program, there are two dis-
similar loops used to get keys for plaintext and secrettext. We
identified, this two loops are two different task or thread. All
other rest of the program will be executed as sequential way
only. The actual fraction of code is given bellow.

 for(int i=0;i<onepad.length;i++) // loop one
 if(plain[j]==onepad[i])
 key1[j]=i;
 for(int i=0;i<onepad.length;i++)//loop two
 if(enc[j]==onepad[i])
 key2[j]=i;

2. Assignment of tasks to processes or threads [8]: A pro-

cess or a thread represents a flow of control executed by a
physical processor or core. A process or thread can execute
different tasks one after another. The number of processes or
threads does not necessarily need to be the same as the num-
ber of physical processors or cores, but often the same number
is used. The main goal of the assignment step is to assign the
tasks such that a good load balancing results, i.e., each process
or thread should have about the same number of computa-
tions to perform. But the number of memory accesses (for
shared address space) or communication operations for data
exchange (for distributed address space) should also be taken
into consideration. For example, when using a shared address
space, it is useful to assign two tasks which work on the same
data set to the same thread, since this leads to a good cache
usage. The assignment of tasks to processes or threads is also

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

called scheduling. For a static decomposition, the assignment
can be done in the initialization phase at program start (static
scheduling). But scheduling can also be done during program
execution (dynamic scheduling). According to the above frac-
tion of code, we decided to have the following named threads.

Thread1:
 for(int i=0;i<onepad.length;i++)
 if(plain[j]==onepad[i])
 key1[j]=i;
Thread2:
 for(int i=0;i<onepad.length;i++)
 if(enc[j]==onepad[i])
 key2[j]=i;
This Thread1 considered as task1 and Thread2 considered

as task2, executing on multi processor environment.
3. Mapping of processes or threads to physical processes

or cores [8]: In the simplest case, each process or thread is
mapped to a separate processor or core, also called execution
unit in the following. If fewer cores than threads are available,
multiple threads must be mapped to a single core. This map-
ping can be done by the operating system, but it could also be
supported by program statements. The main goal of the map-
ping step is to get an equal utilization of the processors or
cores while keeping communication between the processors as
small as possible. According to our program, we have identi-
fied first loop as “plain” thread and second loop as “secret”
thread. The fraction of code exposed bellow.

 if(t.getName().equals("plain")){
 for(int i=0;i<onepad.length;i++)
 if(plain[j]==onepad[i])
 key1[j]=i;
 }

 if(t.getName().equals("secret")){
 for(int i=0;i<onepad.length;i++)
 if(enc[j]==onepad[i])
 key2[j]=i;

1.1 Parallel One Time Pad on SMT

The following program 2 illustates Simultaneous Multi-
Threading (SMT), it can execute without scheduling the thread
on the single or multiprocessing environment.

Program 2 – Parallel One Time Pad

package onepad;
class Parallelonepad implements Runnable{
 Thread t;
 // one pad text
 String pad="abcdefghijklmnopqrstuvwxyz";
 char onepad[]=pad.toCharArray();
 // plaintext
 String planintxt="ijser";
 char plain[]=planintxt.toCharArray();
 //secrettext
 String enctxt="hello";

 char enc[]=enctxt.toCharArray();
 //ciphertext
 static char cipher[]=new char[5];
 static int key1[]=new int[5];
 static int key2[]=new int[5];
 static int key3[]=new int[5];

 int k=0;
 Parallelonepad(){}
 Parallelonepad(String name){
 t=new Thread(this,name);
 t.start();
 }

 public void run(){

 try{
 for(int j=0;j<plain.length;j++){
 if(t.getName().equals("plain")){ //thread plain
 for(int i=0;i<onepad.length;i++)
 if(plain[j]==onepad[i])
 key1[j]=i;
 }
 t.sleep(10);
 if(t.getName().equals("secret")){ //thread secret
 for(int i=0;i<onepad.length;i++)
 if(enc[j]==onepad[i])
 key2[j]=i;
 }
 }

 }catch(Exception e) { System.out.println("Thread Error" + e);}
}
public void encript(){ //encryption method

 System.out.println("Encript...");
 for(int j=0;j<plain.length;j++){
 k=key1[j]+key2[j];
 if(k>25)
 k=k-25;
 cipher[j]=onepad[k];
 System.out.println("(key1) " + key1[j] + " + (key2) " +

key2[j] +" = " + k +" (cipher) " + cipher[j]);
 }
 }

public void decryipt(){ // decryption method
 System.out.println("Decrypt...");
 try{
 for(int j=0;j<plain.length;j++){
 for(int i=0;i<onepad.length;i++)
 if(cipher[j]==onepad[i]){
 key3[j]=i;
 break;
 }

 k=key3[j]-key2[j];
 if(k<0)
 k=25+k;
 cipher[j]=onepad[k];
 System.out.println("(key3) " + key3[j] + " + (key2) "

+ key2[j] +" = " + k +" (cipher) " + cipher[j]);

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 }
 }catch(Exception e) { System.out.println("Error" + e);}
 }

public static void main(String str[]){
try{
Parallelonepad Parallelpad1 = new Parallelonepad("plain");
Parallelonepad Parallelpad2 = new Parallelonepad("secret");
Parallelpad1.t.join();
Parallelpad2.t.join();
if(Parallelpad1.t.isAlive()==false &&
Parallelpad2.t.isAlive()==false){

 new Parallelonepad().encript();
 new Parallelonepad().decryipt();}

}catch(Exception e){ System.out.println("Error: " +e);}
 }
}

As like previous sequential One Time Pad program, here
we have used onepad[] array to have all alphabets, plain[]
array to have plaintext, enc[] array to have secrettext, key1[]
array to have location of plaintext on the array, key2[] array to
have location of secrettext and cipher[] array used for holding
the encrypted text. But all the arrays declared as static, be-
cause during thread running time, the value of array content
might be changed. Since, we cannot reassign array values.
Therefore, key3[] array used to hold cipher key values while
decreption process occured. We assigned plaintext[] array as
“ijser” and enc[] array as “hello”; the output of the program is
as like the same like previous sequential program. But
plaintext keys and secrettext keys were identified by two dif-
ferent threads. Since this model presents with Symutaneous
MultiThreading, it cannot be mapped in which processor core
the ‘plain thread’ and ‘secret thread’ were run on.

Encript...
(key1) 8 + (key2) 7 = 15 (cipher) p
(key1) 9 + (key2) 4 = 13 (cipher) n
(key1) 18 + (key2) 11 = 4 (cipher) e
(key1) 4 + (key2) 11 = 15 (cipher) p
(key1) 17 + (key2) 14 = 6 (cipher) g
Decrypt...
(key3) 15 + (key2) 7 = 8 (cipher) i
(key3) 13 + (key2) 4 = 9 (cipher) j
(key3) 4 + (key2) 11 = 18 (cipher) s
(key3) 15 + (key2) 11 = 4 (cipher) e

 (key3) 6 + (key2) 14 = 17 (cipher) r

5.2 Parallel One Time Pad on CMP

In general, a scheduling algorithm is a method to determine an

efficient execution order for a set of tasks of a given duration on

a given set of execution units. Typically, the number of tasks is

much larger than the number of execution units. There may be

dependencies between the tasks, leading to precedence con-

straints. Since the number of execution units is fixed, there are

also capacity constraints. Both types of constraints restrict the

schedules that can be used. Usually, the scheduling algorithm

considers the situation that each task is executed sequentially by

one processor or core (single-processor tasks). But in some mod-

els, a more general case is also considered which assumes that

several execution units can be employed for a single task (parallel

tasks), thus leading to a smaller task execution time. The overall

goal of a scheduling algorithm is to find a schedule for the tasks

which defines for each task a starting time and an execution unit

such that the precedence and capacity constraints are fulfilled and

such that a given objective function is optimized. Often, the over-

all completion time (also called makespan) should be minimized.

This is the time elapsed between the start of the first task and the

completion of the last task of the program.

Program 3: JThreadCore.java
//this is from my earliar research; see reference # [3]

package onepad;

// inherited with Thread class

public class JThreadCore extends Thread{

// get the available system processor

private int Processors ;

// select the processor to execute the thread

private int ProcessorNum;

//assign the name of the thread

private static String name;

Thread t;

public JThreadCore(){

}

public JThreadCore(String name){

//interchange the thread name value to class variable

this.name=name;

}

public JThreadCore(String name,int ProcessorNum){

//interchange the thread name value to class variable

this.name=name;

//interchange the processor number to class variable

this.ProcessorNum=ProcessorNum;

//call setAffinity method

setAffinity(ProcessorNum);

}

//synchronized method to select the processor

public synchronized void setAffinity(int ProcessorNum){

// interchange processor number to class variable

this.ProcessorNum=ProcessorNum;

//get the available processor in the system

Processors = Runtime.getRuntime().availableProcessors();

//check selected processor is greater than equal to the selected

//processor

if (ProcessorNum>=Processors)

throw new IllegalArgumentException("This processor is not

available");

//create threads using loop

for(int i=0; i < Processors ; i++)

//check i value is equal to user selected processor

 if (i==ProcessorNum){

//create thread

 t=new Thread(name); }

 }

//get the affinity of the thread

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

public int getAffinity(){

//return the core number, in which current thread is running

 return ProcessorNum;

 }

}

Program 4: ParallelonepadCore.java
package onepad;

import onepad.JThreadCore;

class ParallelonepadCore extends JThreadCore{

private static String name;

private static int wait;

private static int pri,afi;

 String pad="abcdefghijklmnopqrstuvwxyz";

 char onepad[]=pad.toCharArray();

 String planintxt="ijser";

 char plain[]=planintxt.toCharArray();

 String enctxt="hello";

 char enc[]=enctxt.toCharArray();

 static char cipher[]=new char[5];

 static int key1[]=new int[5];

 static int key2[]=new int[5];

 static int key3[]=new int[5];

 int k=0;

ParallelonepadCore(){

}

ParallelonepadCore(String name,int afi){

super(name);

this.name=name;

this.afi=afi;

setAffinity(afi);

start();

}

public void run(){

 try{

 for(int j=0;j<plain.length;j++){

 if(t.getName().equals("plain")){

 for(int i=0;i<onepad.length;i++)

 if(plain[j]==onepad[i]){

 key1[j]=i;

 System.out.println(t.getName() +" thread on core "

+ getAffinity() + " with the plaintext key " + key1[j]);

 }

 }

 t.sleep(10);

 if(t.getName().equals("secret")){

 for(int i=0;i<onepad.length;i++)

 if(enc[j]==onepad[i]){

 key2[j]=i;

 System.out.println(t.getName() + " thread on core

" + getAffinity() + " with the secrettext key " + key2[j]);

 }

 }

 }

 }catch(Exception e) { System.out.println("Thread Error"

+ e);}

 }

 public void encript(){

 System.out.println("Encript...");

 for(int j=0;j<plain.length;j++){

 k=key1[j]+key2[j];

 if(k>25)

 k=k-25;

 cipher[j]=onepad[k];

 System.out.println("(key1) " + key1[j] + " + (key2) " +

key2[j] +" = " + k +" (cipher) " + cipher[j]);

 }

 }

 public void decryipt(){

 System.out.println("Decrypt...");

 try{

 for(int j=0;j<plain.length;j++){

 for(int i=0;i<onepad.length;i++)

 if(cipher[j]==onepad[i]){

 key3[j]=i;

 break;

 }

 k=key3[j]-key2[j];

 if(k<0)

 k=25+k;

 cipher[j]=onepad[k];

 System.out.println("(key3) " + key3[j] + " + (key2) "

+ key2[j] +" = " + k +" (cipher) " + cipher[j]);

 }

 }catch(Exception e) { System.out.println("Error" + e);}

 }

public static void main(String s[]){

try{

ParallelonepadCore a1= new ParallelonepadCore("plain",0);

ParallelonepadCore a2= new ParallelonepadCore("secret",1);

a1.join(); a2.join();

if(a1.t.isAlive()==false && a2.t.isAlive()==false){

 new ParallelonepadCore().encript();

 new ParallelonepadCore().decryipt();}

 }catch(Exception e){System.out.println(e); }

 }

}

As like previous parallel One Time Pad program, here we
have used onepad[] array to have all alphabets, plain[] array
to have plaintext, enc[] array to have secrettext, key1[] array to
have location of plaintext on the array, key2[] array to have
location of secrettext and cipher[] array used for holding the

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

encrypted text, key3[] array used to hold cipher key values
while decreption process occured. We assigned plaintext[]
array as “ijser” and enc[] array as “hello”;the output of the
program shown bellow. The main advantage of this pro-
gramming model can be identified the core processing with, in
which processor core the ‘plain thread’ and ‘secret thread’
were run on.

plain thread on core 0 with the plaintext key 8

secret thread on core 1 with the secrettext key 7

plain thread on core 0 with the plaintext key 9

secret thread on core 1 with the secrettext key 4

plain thread on core 0 with the plaintext key 18

secret thread on core 1 with the secrettext key 11

plain thread on core 0 with the plaintext key 4

secret thread on core 1 with the secrettext key 11

plain thread on core 0 with the plaintext key 17

secret thread on core 1 with the secrettext key 14

Encript...

(key1) 8 + (key2) 7 = 15 (cipher) p

(key1) 9 + (key2) 4 = 13 (cipher) n

(key1) 18 + (key2) 11 = 4 (cipher) e

(key1) 4 + (key2) 11 = 15 (cipher) p

(key1) 17 + (key2) 14 = 6 (cipher) g

Decrypt...

(key3) 15 + (key2) 7 = 8 (cipher) i

(key3) 13 + (key2) 4 = 9 (cipher) j

(key3) 4 + (key2) 11 = 18 (cipher) s

(key3) 15 + (key2) 11 = 4 (cipher) e

(key3) 6 + (key2) 14 = 17 (cipher) r

6 RESULT AND DISCUSION

At this point one may wonder how we measure the performance

benefit of parallel programming. Intuition tells us that if we can sub-
divide disparate tasks and process them simultaneously, we are likely

to see significant performance improvements. In the case where the
task is completely independent, the performance benefit is obvious,

but most cases are not so simple. How does one quantitatively de-
termine the performance [4] benefit of parallel programming? One

metric is to compare the elapsed run time of the best sequential algo-
rithm versus the elapsed run time of the parallel program. This ratio

is known as the speedup and characterizes how much faster a pro-
gram runs when parallelized.

Speedup is defined in terms of the number of physical threads

used in the parallel implementation. Based on the parallel One Time

Pad program solving methods, we exctely acquired the actual per-

formance improvements on, where plaintext key and secret key loop

is occurred. When we have huge amont of plaintext expected to be

encrypted, this required to execute the loop based on the length of

the plaintext. And the securettext is also expeted to have same length

what plaintext length has. If two different loops executed in a se-

quential One Time Pad as one after the other loop based on the

length of the plaintext and secrettext, diffinately the performance of

the program will be degraded. When this situation occurred in paral-

lel One Time Pad program, there is possiblitis of getting more per-

formance than sequential One Time Pad program. In this program,

we assigned static array size as 5, because the plaintext is “ijser” and

secrettext is “hello”. If suppose you need to have more length

plaintext, we sugget to get inputs for the plaintext in addition to

secrettext and assign them with the dynamic array.

7 CONCLUSION

Working with multiple threads on multiprocessor is very natural to

improve the performance based on number of threads on CPUs. We

implemented One Time Pad cryptography technique with excellent

programs in a sequaltial as well as parallel way. Especially, parallel

One Time Pad programs have only two threads that can utilize the

parallel processing machine. Parallel One Time Pad program cannot

be mapped the threads on the execution cores of the CPUs. However

the parallel One Time Pad with core program can be mapped the

threads on the execution cores of the CPUs. With respect to the result

of the actual performace only based on the length of the

plaintext/secrettext. If the length of the plaintext/secrettext is less,

there is less performance in parallel executon. However, if the length

of the plaintext/secrettext is more, there is great performance in par-

allel One Time Pad programs.

REFERENCES

[1] Ajit Singh and Rimple Gilhotra, International Journal of Network Security

& Its Applications (IJNSA), Vol.3, No.3, May 2011, ISSN: 09752307.

[2] Alan g. Konheim, Computer Security and Cryptography, John Wiley &

Sons, 2007, ISBN-10: 0-471-94783-0.

[3] Bala Dhandayuthapani Veerasamy and Dr. G.M. Nasira, “Setting CPU

Affinity in Windows Based SMP Systems Using Java”, International Jour-

nal of Scientific & Engineering Research, USA, Volume 3, Issue 4, April

2012, ISSN 2229-5518.
[4] Darryl Gove, Multicore Application Programming For Windows, Linux, and

Oracle® Solaris, Pearson Education, 2011, ISBN-10: 0-321-71137-8.

[5] Numerics, Applications, and Trends, Parallel Computing, Springer, 2009,

ISBN 978-1-84882-408-9

[6] Shameem Akhter, Jason Roberts, Multi-Core Programming Increasing Per-

formance through Software Multi-threading, Intel Corporation, ISBN 0-

9764832-4-6.

[7] Sharad Patil, Manoj Devare & Ajay Kumar, International Journal of Com-

puter Science and Security (IJCSS), Volume (3): Issue (2), Feb 2011, ISSN

(online): 1985-1553.

[8] Thomas Rauber, Gudula Runger, Parallel Programming For Multicore and

Cluster Systems, Springer, 2010, ISBN 978-3-642-04817-3.

http://www.ijser.org/

